
IGI Ltd, The Granary, Hallsannery, Bideford, Devon, EX39 5HE, UK 
Tel: +44 (0)1237 471749 Email: info@igiltd.com Website: www.igiltd.com 

The extinction of machine learning? 
A short note by Dan Cornford on the place of machine learning in the geosciences, part of the Art of 

Science series of technical notes. 

Don’t get fooled by ML, AI, they are going to fade away in 5 years or less in 

geology at least. 

Zhiyong He, 23/11/2021, Linked-In 

I’ve recently noticed several discussions on Linked In, and elsewhere, that promote Artificial 

Intelligence and Machine Learning as the tools to take the oil and gas industry through and beyond 

the energy transition. This appears, increasingly, to be the view of ‘management’ in many oil and gas 

companies – associated with a hope that these tools offer the solutions to (or a distraction from?) 

many of their problems. 

I find this interesting. 

My bias (full disclosure) 
My training was as a physical scientist in maths and meteorology, I did my PhD in spatial statistics 

applied to climate and weather, my postdoc in machine learning applied to 

weather forecasting, and then worked as a Lecturer, then Reader leading research 

projects in managing uncertainty in complex (physical) systems where I 

increasingly became convinced that a Bayesian approach to modelling of all forms 

was the key to clarity of thought and scientific integrity. That took me 20+ years. 

I then joined IGI. My aim was to get out of the research rat race, which has become increasingly 

challenging as universities seek to balance their role as trainers1 and researchers, while being run as 

businesses. Much research in universities runs on a 3 year ‘PhD’ / project cycle and is strongly driven 

by whatever is ‘sexy’ at the time, not necessarily what is useful. I wanted to do something more 

useful, something longer term: to really improve how we use and understand data and models in the 

natural sciences, especially in the context of oil and gas. 

This flurry of interest in machine learning (and AI and data science) got me thinking – is Zhiyong right 

and this is a flash in the pan in geology, or are the machine learning exponents right, and this will 

have long term traction, maybe even a central role, in the discipline? 

I believe to answer this question one must fundamentally understand the role of models and data in 

the geosciences.  

What are models? 
In any real-world study, whether we consider it explicitly, or whether it is implicit in our workflows, 

we are always building models. I consider a model to be any representation of a system or process 

which we are studying, abstract or concrete. In a general setting these systems or processes could be 

anything, for example the purchasing patterns of consumers on a major shopping web site. In the 

geosciences the systems and processes will typically be real-world, physical systems of which we 

already have significant (physics-, chemistry- and biology-based) process understanding. 

 
1 I used to believe we were educators, but for too many students, universities are there to open career paths, 
not minds 
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Models do not have to be physics based (such as forward modelling of 

compressional waves in solids for seismic inversion), they can also be empirical 

(e.g. the relation between biomarkers in the system and the depositional 

environment of the source rock) or purely data driven such as the identification of 

oil families in a basin or region using clustering models. In general, our models will 

always be supported by some scientific, process-based understanding providing a more robust 

confidence in any relationships established based on data, especially when extrapolating.  

It is very rare that models are context free. We generally build models to answer a question. The 

question might be around the generation potential of a play, the depositional environmental 

characteristics of a source rock, the type (and number) of sources of an oil in a reservoir, whether an 

oil has been water washed, or biodegraded, the migration pathways and mechanisms in a prospect 

or for CO2 storage, etc. There are infinitely many questions we can ask, and we will build models to 

answer these questions.  

A key point to always recall, after statistician George Box, is: 

All models are wrong, some are useful. 

We interpret this to mean all models are approximations of reality. Reality simply is. Models are a 

human construct, and while the intention here is not to go too deeply into the philosophy of science, 

it is good to remind ourselves that we are constructing the models. They reflect 

our beliefs. They are also always approximations. This is true of any model, from a 

very detailed physics-based simulator of fluid flow in a pipeline (or porous media) 

to a very simple empirical, statistical model relating bitumen reflectance to 

vitrinite reflectance. 

Using models 
It can be helpful to think about modelling in the following (subjective Bayesian) framework: 

1. Research. You start with some prior knowledge of the problem you are addressing – this can 

come from a physics / chemistry / biology-based understanding, experience with similar 

problems in the past, knowledge of the area based on data you have previously seen, and 

published sources you trust. 

2. Prior formulation. You formulate a conceptual model that represents your prior knowledge. 

This could initially be very descriptive, but at some point you will probably formalise this to a 

computational model – either in a piece of software, or as some code. 

3. Experimental design. Plan your ‘experiment’ and identify the data / observations needed to 

‘learn, or calibrate, your model’.  

4. Learning or inference. You try and ‘learn your model’ from new data you acquire (either 

purchase, go in the field and sample / analyse, or find in the literature / other sources). If 

you come from a more physics-based background you might talk about ‘calibrating’ your 

model, a statistician might talk about ‘inference’ in their model. 

a. Potentially iterate to 3 if your model answers are not sufficiently informative to 

allow you to proceed to 5 – this is known as adaptive experimental design. 

5. Decision making. Most real projects result in decisions – models are means to rationally 

making those decisions, but the decision is the aspect that really matters (unless you are 

doing pure science, when the model may be the goal). 
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Since we already accepted all models are wrong, it should come as no surprise 

here that we will argue data and uncertainty play a key role. We consider learning 

to be the process of generalising experience, or reducing uncertainty in the 

outcomes, given a series of ‘inputs’ (data). In statistics this would be called 

‘inference’, in machine learning, ‘learning’, in the physical sciences ‘calibration’ or 

‘data assimilation’. 

When dealing with computational models we characterise learning as: 

“Reducing our uncertainty in the model representation and outcomes given 

observational data.” 

If learning is simply the process of updating our beliefs about our models, what are the differences 

between machine learning models and physically motivated models? Well, not as much as you might 

think. For example, a Gaussian process (using a squared exponential kernel), which is a particular 

class of models popular in machine learning, represents the solution space of functions that can 

arise from diffusion processes. 

Are machine learning and physics-based models different? 
Every model can be expressed as y=f(x;w)+e. Here y are the outputs of the model, x the inputs 

(state), w the model parameters and e the noise or model discrepancy (probabilistic representation 

of the difference between the model and reality)2. The model function, f(), could be a linear 

regression, a complex multi-layered neural network, or the solver for a set of differential operators 

(representing a physics-based model). In a Bayesian setting the form of f() defines our prior beliefs 

(constraints) over the possible solutions the model should admit. 

Simplistically, machine learning models, in all their flavours, are in essence based on some 

‘smoothness’ or continuity assumptions on f(), to interpolate between (and extrapolate beyond) 

observations. There are very few real physical models (above the molecular scale) that are not 

essentially expressions of conservation equations, with continuity conditions. That combination 

generates smoothness. It is important to remind ourselves that even well-known physically based 

models such as the laws of thermodynamics, or Euler equations of flow are actually statistical 

models – they were originally derived from empirical studies, but are now seen as being based on 

statistical physics modelling of the interactions of individual atoms or molecules (which do not at the 

molecular scale obey those equations). At any scale of interest the averaging over 10^23+ molecules 

means we can treat these equations as excellent fits to observed behaviour. But they are strictly 

equations for the mean behaviour.  

Like religions, for example Catholicism and Protestantism, which are in essence all 

based on the similar underlying set of beliefs, machine learning and process-based 

modelling are not so different. And like religions these small differences get 

amplified to focus on what divides, not what unites. This would appear to be a 

human condition. 

The truth is we can do silly things with any type of model. Each type has its strengths and 

weaknesses, and the distinction between different types of models is somewhat arbitrary. 

Understanding that a model defines a prior over f(), and that learning and calibration are the same 

 
2 For notational convenience we assume an additive noise model, however more general formulations are 
possible, and in some settings necessary. 
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fundamental problem gives us a more powerful way to think about models. It allows us to select the 

right tool, or f(), for the job. 

A summary 
I would advance the following decision process for selecting whether machine learning or AI 

methods might be appropriate to solve a problem: 

 I have vastly more data points 
(samples) than variables (parameters) 
to ‘learn’ 

I have a similar number, or fewer 
data points (samples) than 
variables to ‘learn’ 

I know almost nothing about 
(the response of) the system 

Use machine learning, e.g. deep 
neural networks 

Use Bayesian linear methods, 
quantify uncertainty 

I have some prior knowledge 
of the system, in terms of the 
response for my variables of 
interest 

Use machine learning, but maybe 
select model structure more carefully, 
consider Bayesian methods 

Use Bayesian machine learning 
methods and take care to avoid 
over-fitting 

I have prior knowledge of the 
physical / chemical processes 
in the system 

Understand whether you need to 
build a full physics-based model, or 
machine learning with appropriate 
models, or emulation / surrogate 
models 

Build a physics-based model. 
Consider (Bayesian) calibration 
and data assimilation to learn 
about the model using Bayesian 
emulation 

I have prior knowledge of the 
physical / chemical processes 
in the system but I am only 
interested in some small 
number of inputs and outputs 

Consider an emulation or surrogate 
modelling approach combine physics-
based and statistical models 

Consider Bayesian emulation / 
surrogate modelling approach, 
thinking carefully about 
uncertainty quantification 

The above table is wrong. Hopefully it is still useful. I’d argue in most natural science disciplines we 

are typically in the right-hand column – data sparse. A reasonable question would be what does 

“vastly more” mean. There is not a simple answer here – it depends on many factors, such as the 

uncertainty in the observations, the complexity and dimensionality of the model, but as a rough rule 

of thumb for a non-linear model I’d want roughly 10 (independent) observations for each parameter 

I am trying to estimate, ideally covering the region of interest.  

For me the key point is that the question should not be machine learning or 

process-based modelling, rather how do we best combine these to facilitate 

understanding and decision making. A deep understanding is necessary to see 

models, whether they be ‘statistical’ or ‘physically based’, as in essence being the 

same thing. It is in fact more important to acknowledge that a proper treatment of 

uncertainty is the most important consideration in our subsurface context, not the set of tools we 

use to help us generalise from our data. The representation and treatment of uncertainty will form 

the basis of a future piece. 

I believe machine learning, especialy in a statistical framework will have a long and fruitful role in 

our toolkit alonside a range of other models, whether they be physically motivated or not. Machine 

learning, like all scientific developments is subject to a hype-cycle, and is probably somewhere near 

the ‘peak of over-inflated expectations’ in most areas of geoscience. But it will reach the ‘plateau of 

productivity’, and arguably is doing so in some data-rich areas, such as seismic processing.  

To update Box’s quote: 

All Linked-In posts are opinion, some are useful. 

I leave you to be the judge of that. 


